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Modeling the singularity dynamics of a Hele-Shaw flow
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A simple dynamical model approximating the complex singularity motion of a Hele-Shaw flow is intro-
duced. This model describes accurately secondary tip-splitting instabilities and remains valid for values of the
surface tension and time intervals where previous perturbative calculations do not apply.
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The time evolution of an air bubble in a Hele-Shaw cell nenta (defined bydz(§,t) ~A(t)[ £— &4(t) ]?) is constant in
[1] belongs to the wide family of pattern forming systemstime. On the contrary, when surface tension is present, Tan-
that can be modeled as Laplacian growth phenomena. Anyeer[7] has showrnassumingl<1) that only initial singu-
such system is able to displdin some limih complex or larities with o< —4/3 preserve this exponent in time. Those
fractal patterns, the understanding of which remains mostlyisolated singularities with —4/3<a<—1/2 are immedi-
incomplete. The usual picture is that the asymptotic patter@tely transformed into a “cluster” of- 4/3 branch singulari-
is reached through a cascade of instabilifiggs splitting or ~ ties localized around the initial singularity. Initial zeros of
side branching One expects that simple models for the de-9:Z(¢,t=0) also give rise to—4/3 singularities(termed
scription of this cascade will shed some light on the under-'daughter” singularities, with the difference that they move
lying dynamical mechanisms generating these complicatetith @ speed different from that of the original zero, so that
patterns. A particularly simple and enlightening example idheir respgqﬂve trajectories eventually differ. Thus, the exis-
the branched-growth model introduced in REZ), in the tence of initial zeros 0b.z(§,t=0) leads to the strange situ-

e a ; ; ation where theT=0 and T small solution differ signifi-
context of diffusion-limited aggregation. The aim of the cantly in orderO(1) time, even though th&=0 solution is

present work is to introduce a simple dynamical model for iar f N his effect has b d
the time evolution of the interface of a Hele-Shaw bubble, S9tar for any tme. This effect has been consi erefBin
We will consider the formulation of the time evolution and[9]. A method to measure the singularity strength has
. . been proposed ifiL0], where we have directly confirmed the
equanons of a Hele-ShaW rovx_/ in tgrms of a corllfor-mal MapP-.yistence of the- 4/3 singularities.
ping z(¢,t), which maps the interior of the unit circlg] In this paper a simple dynamical model is presented for
<1 into the exterior of the bubble, the origin being mappede mqtion of these singularities that works for valuesTof
to '”f'”lty- We W'l' also assume the Darcy approximation 5nq time intervals where the perturbative calculation7of
(u~—Vp, whereu is the flow velocity averaged across the have been shown to break down. Our initial motivation
cell andp the pressurg the fact that the more viscous fluid comes from the consideration of the singularity distributions
is incompressible, while the bubble fluid has zero viscosityobserved if10], where we have provided evidence for the
and will impose constant flux boundary conditions. The sur-existence of “new” singularities, that cannot apparently be
face tension will be denoted by. The scaling of all the related to those predicted in the framework of R&f. Those
physical quantities is the same as that of R&f. Working  should be considered as “second generation” singularities,
with a conformal mapping rather than in physical space idn the sense that they appear later than both the initial singu-
particularly convenient in this context, mainly because thdarities already present in the initial condition and their pos-
Laplace equatiod p=0 (implied by the incompressibilily  sible daughters. In Refl10], we also mentioned the exis-
can be easily solved in terms of the Poisson kernel. Historitence of —4/3 singularities induced by a weak branch cut
cally, this technique was used by Saffmi@] to derive the  (a>0) present injz(£,t=0). The model we present here
first family of (finger shapedexact solutions in the limit of accounts for both of these facts in a simple way and more
T=0. Most of the initial efforts have been devoted to thegenerally, provides a simpl@ut approximatgpicture of the
understanding of the selection of the= 1/2 Saffman-Taylor appearance of secondary instabilities.

finger (\ is the ratio of the finger width to the cell width We start from the observation that the conformal mapping
The solution of this problenp4] has revealed the subtle ef- given by
fect of the surface tension term, which acts as a singular N
perturbation in the evolution equations. H [E—2(D)]

At any timet for which the interface is regular, the map- i=1 '
ping z(&,t) is, by construction, analytic in€|&|<1 but, in dZ(EV=A) — @
general, can develop singularities outside. The motion of the gZH [£—pi(D)]

i=1

latter is particularly interesting. For instance, whien 0 and

assuming the singularities to be isolated, it is easy to write

their exact evolution equatioi§,6]. More generally, it has is an exact solution of the Hele-Shaw flow equationd if
been showr{7] that, whenT=0, all the singularities con- =0. Then,z(&,t)=B(t)/é+ Ei“LlRi(t)log(g—pi(t))_ In order
verge towards the unit circle, whereas their singularity expoto ensure the mapping to be conformal ir<[¥|<1, one
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needs to imposdz(t)|>1, |pi(t)|>1, and =N 1/z(t)  termofl,. Letus note by# ,p/), i=1,... N, the zeros and
=EiN:11/pi(t). More general forms, allowing, for instance, poles obtained from the Padmalysis of theT-dependent
polynomials of different degrees in the numerator and determ of the right-hand side of E2). Then, the initial con-
nominator, can be handled in a similar way. For the sake oflition will be written under the form(1), with N=N,
simplicity, in this paper we will only consider the particular +2N, z(0)=2°, p;(0)=p?, i=1,... Ny, zi(0)=ziT,N0,

form (1). The second observation is the fact that, if we iden- 0)=2" i =Nat+ 1. NatN and 2(0
tify a fjord (or protrusion of the interface with an isolated Pi(0)=2in, 0 Y oo , (0)
singularity, then the inspection of the time evolution of the =Pi_y _n:»  Pi(0)=Pj_y s 1=No+NoF1....No

shape of a Hele-Shaw bubble shows that an approximation of oN: . This form ensures a correct approximation of both
the type(1) with a fixed number of singularities should 2,(£,t=0) and its time derivative.

priori, be adequate during some interval of tifup to the One of the major weaknesses of the present approach is
appearance of additional fjorddncreasing this interval will  (q|5ted to the fact that the minimum &{(0) is not uniquely
imp:y_adt()jirllg more singularities in some rational way that Wegefined for the above form of the initial condition, but only
explain below. . o ,
Let us write the evolution equation of the conformal map—f'xes .the value; .Oti ~hi 1= N°.+ L...No+2N,. Thus, an .
ping in the form[7] additional condition is negded in order to completely specify
the model. Several conditions have been tried, all of them

dn Zg(f,t)=zglr?g(fzgl1(§,t)). 2) leading to similar conclusions as far as the asymptotic dy-
where namics is concerned. All the examples given below have
1 de' (é+¢") been done by imposing that, &0, z(t=0)=0, i=Nj
I1(§,t)=2.— T +1,...No+2N;. Another important point is whether two
b Jigg=1 &8 (8-8) slightly different interfacesthe exact initial interface and its
1 approximation using Padapproximantsevolve in a similar
xw R &'W, (¢',1)], (3 way. In view of the results of5], this is probably wrong in
es general. The examples below show, however, that, for finite
and W(&,t) is a complex potential such that Rg&t)]=  intervals of time, their time evolutions are comparable.
pressure. Whei >0, the expressiofil) is not a solution of Let us first consider an initial interface with exactly two
Eq. (2), but one can try to find values of the time derivativeszeros and polesz;(0)=1.4, p;(0)=1.3, z,(0)= 1.3/-1,
A(1), z(t), andp;(t), such that the error estimate p2(0) being determined by fj(0)= —1/py(0)+ 1/z,(0)
+1/z,(0). WhenT=0, z,(t) reaches the unit circle in finite
1 ,dé time (t~0.6), and the interface develops a cusp. On the
E(H)= i |§|:l|(9t|” Z(£,1) =2 "9(§z1(&.1))] & contrary, z,(t) is screened by, (t), and never reachdg|
(4) =1. The addition of surface tension regularizes the problem
as can be seen in Fig(d), where the time evolution fofF
is minimized under the constraint thak] ,[1/z(t) =0.01 and B<t=<28 is represented. The value D{which is

—1/p;(t)]=0, for any timet (this approach has been in- rather large compared to those considered in R&. has
spired by a similar work11] for the Burger’s equation using been dictated by the wish of studying secondary instabilities
the so-called traveling wavelets metho®ne of the reasons in a reliable way{14], as well as exploring parameter regions
for using the particular form af.(¢,t) givenin Eq.(1) isthe  where the scaling predictions of R¢T] do not hold.
fact that the minimization oE(t) can be done in an analytic The Padeanalysis of theT-dependent part df; imposes,
way, the details of which will be given elsewhere. One isat the lowest order, the addition @fespectively three and
then led to consider the set ofN2-1 coupled complex four couples of singularities for each of the two initial
ODE's couples of singularitiesNy=7). Lower values ofN; yield
M[AZy,...pn]T=F, (5) E(Q_)~||¢9t(ln z)|. With the addition of these “new” singu-
larities, E(0)~102|a,(In z)|. The time evolution(com-
where M is a square matrix of sizeNe+1, andF a (2N puted with an adaptive time step Runge-Kutta mejtoddhe
+1)-dimensional vector, both of them being analytic func-set of 9 couples of singularities according to the dynamical
tions of A(t),z,(t),...,pn(t). The evolution model we study model Eq.(5) is represented in Fig.(4), the corresponding
is the following. First, we choos@rbitrarily) some precision interfaces being represented in Figb)l The time integra-
parametee. For a given initial interface, it is always possible tion of Eq. (5) stops when the number of points required to
[12] using Pads method[13] to approximatez,(¢£,t=0)  evaluate the contour integrals involvedfexceeds 2’ in
with precisione by an expression of typél). Let Ny be the  this particular casd,~18. From Fig. 1a), it is clear that the
number of couples of singularitie:i?(, p?) obtained in this singularities tend to organize@symptotically into pairs of
way. Their time derivatives are chosen through the minimi-zeros and poles. Thus, based on the results of [R6f, we
zation of E(0). However, it is likely thatE(0)> €, in which  conclude that the present model approachesi3 singular-
case more singularities are needed. One simple method ity by a pole (@=—1), accompanied by a neighboring zero.
find them is to perform a Padmalysis of the right-hand side Figure Ib) shows that this approximation is actually quite
of Eg. (2), evaluated on the unit circle. Notice that the reasonablgin this picture, the referencg'exact”) solution
T-independent part of; (such thattW,= —Q/2m, see[7])  has been computed using the algorithm of R&b]]. This
has exactly the same singularity structureasAs expected, fact explains, in some sense, the early observations made by
new singularities come into play through the surface tensioiai et al.[16] that the daughter singularities spawned by an
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TABLE I. Initial singularity distribution of Fig. 18) (radius and
angle refer to the polar coordinates of each singulgriaypd their
asymptotic trajectorynumbered according to Fig(d]. Notice that
the couple £g,py) is too far from the unit circle to be in correspon-
dence with any fjord.

Initial Initial angle Asymptotic
Singularity radius (degrees trajectory
2 1.4 0.0 3
p1 1.3 0.0 1
‘ e ‘ z, 1.4 90.0 8
-2 -1 0 1 = D, 1.395876 94.39870 2
Z3 1.331099 89.760048 5
10 ¢ Ps 1.331099 89.760048 5
i z, 1.486233 89.108719 6
5 L 1 P4 1.486233 89.108719 8
[ zs 1.386236 86.821175 4
i Ps 1.386236 86.821175 4
OF ] Z 1.300675 0.0862870 1
I Ps 1.300675 0.0862870 3
50 ] z 1.405713  —3.0412028 7
i P, 1.405713  —3.0412028 7
: Zg 1.415905 3.34401773 2
—10 S e Ps 1.415905 3.34401773 6
-10 -5 0 5 10 24 1.483946  —0.39628865 9
FIG. 1. (@) Time evolution of the nine zero-pole couples ap- Po 1.483946 —0.39628865 9

proximating the initial  condition J.z(£,0)=(£—1.4)(¢

—1.4/-1)/(— - 1.3)[£—p,(0)]/&% with surface tensionT
=0.01[p,(0) is given in the text Zeros(poles are represented by
circle (squares The symbols belonging to the same trajectory are
connected by a continuous line. Their size decreases in time t
indicate the direction of the trajectorgh) Comparison between the
reconstructed interfacédashed linet,,,,=16) corresponding to the
singularities represented i@ and the exact interfaceontinuous
line, ta.=28), computed with the algorithm of Rf15]. The time
interval between two consecutive interface$=s4.

initial zero can be approachédsing Domb-Sykes plots, for

any singularity decreases in time, a typical singularity trajec-
fory (when T>0) starts with a rather quick increase of the
radius(and in some cases of the angular posititmilowed
by a much slower approach of the unit circle. The initial fast
motion is critical for the separation of the singularities, and
its details depend oN. However, it is remarkable that the
asymptotic behavior is mostly independentNyf. In other

TABLE II. Initial singularity distribution of Fig. 2a) (radius

instance as polelike singularities. In other words, the shapeand angle refer to the polar coordinates of each singujarityd

of a fjord corresponding to a= —4/3 singularity, or that

their asymptotic trajectorjnumbered according to Fig(&].

generated by a zero-pole couple, are actually very close. The

labeling of the zero-pole couples corresponds to that of Fig.

1(b). The two initial zero-pole couples become the two tra- Singularity

jectories marked 1 and 2. Those can be shown to correspond
to —4/3 singularities using the Fuchs analysis of Ré&f)].
“New” trajectories, marked 3, 4, and 5, correspond probably
to the daughter singularities of the two initial zeros. The
trajectories marked 6, 7, and 8 are typical examples of “sec-
ond generation” fjords. Notice that trajectories 6, 7, and 8
are much further fronjé|=1 than the otheréthe time evo-
lution of the “exact” interface is shown up to=24 in order

to stress the fact that trajectories 6 to 8 do eventually corre-
spond to fjords, something not visible &t 16).

In Table |, the exact initial distribution of zeroes and
poles, and their asymptotic location is given. The asymptotic
pairing of zeros and poles does not necessarily correspond to
the initial singularity distribution, and may depend on the
additional constraint needed to define the minimization of
E(0). Forinstance,zg goes to fjord 1, whereapg corre-
sponds, rather unexpectedly, to fjord 3. In contrast toTthe

Initial Initial angle Asymptotic
radius (degrees trajectory

z; 1.81 —179.956 1

p1 2.20 —179.956 3

Z, 1.805 77.638 2

P2 7.07 60.3468 2

Z3 1.805 —77.638 2

P3 7.08351 —60.60 2

Z, 1.03429 —-180 1

P4 1.03429 —-180 3

Zs 1.1369 89.0 3

Ps 1.1369 89.0 1

Zs 1.1371 —88.9 3

Ps 1.1371 —88.9 T

z; 1.2137 60.755 4

p7 1.2137 60.755 4

Zg 1.21454 —60.745 4

Ps 1.21454 —60.745 4

=0 dynamics, where it can be shoyn| that the radius of
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the time evolution ofg z(&,t=0)=(£+0.5)>°+1/£2. This
case has been studied [ih0], where we provided evidence
for the generation ofa=—4/3 singularities from thew
=1/2 initial singularity. Notice that besides the square root
singularity, two symmetric zeros exist located &t~ 0.4
+i1.7, and that no zeros are present at infinity. The lowest
Padeapproximant of9.z(£,t=0) in the form(1) consists of
three zero-pole couples, the poles associated to the two zeros
&, being located fairly far from&|=1 (rigorously, these
two poles should be located at infinityTable Il gives the
exact initial location of the singularities, as well as their
asymptotic location. Applying Tanveer's theory to this new
10 initial condition naturally explains the existence of the two
i trajectories marked 1 and’ Iin Fig. 2(a), corresponding to
; a=—4/3 (cf. [10]). Figure Zb) also shows that the approxi-
. mation made for the initial interface is quite good, and that it
1 is preserved under the dynamics of the systpfor a non-
negligible interval of time. In fact, the differences observed
in Fig. 2(b) between the real interface and that generated by
’ Eq. (5) can be easily fixed by improving the approximation
] of the curvature-dependent term Igf.
[ ] To summarize, the motion of the complex singularities of
10 Ll Bt ] a Hele-Shaw flow has been shown to be well approximated,
10 -5 0 5 10 for finite time intervals, by a finite system of coupled ODE’s
describing the trajectories of pairs of zero poles. This ap-
FIG. 2. (@ Time evolution €n.=25) of the eight zero-pole proximation is independent of the value of the surface ten-
couples approximating the initial conditiod;z(£,t=0)=(1.2  sjon parameter. The clusters 6f4/3 singularities, predicted
+£)+1/¢%, with T=0.01. Zerogpoled are represented by circle jn Ref.[7], are approximated by a finiteisually twg num-
(squares The symbols belonging to the same trajectory are conper of well defined zero-pole trajectories. Secondary insta-
necte_d by_ a contlnuous_ line. Their size d_ecreases in time to 'nd'catﬁilities can be related to the existence of a complex singular-
the direction of the trajectoryb) Comparison between the recon- i sirycture induced by the surface tension term around the
structed mter_facesdashed ling cor_respondlng _to the S|_ngular|t|es location of the singularities Ozfgz(f,t=0). From this point
r_epre_sented i@ and the exact mt_erfa_c(acontlnuo_us ling: The of view, the tip-splitting phenomenon appears to be a com-
time interval between two consecutive interfaces=s. L . .
pletely deterministic mechanism, resulting from the approach

) o ] ) to the unit circle of singularities initially advected far from
words, increasind\, preserves the asymptotic behavior of i aiy original position.

the low generation singularities, and adds higher generations,

characterized by the fact that the transient fast motion takes The author acknowledges computer resources frohe Po

the singularity farther and farther from the unit circle. MNI (U. Bordeaux ), and stimulating discussions with R.
In order to study the effect of approximating an initial Gay, M. Holschneider, A. Arneodo, Y. Couder, and M. Be-

conformal mapping not of the forrfl), let us now consider namar.
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