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Modeling the singularity dynamics of a Hele-Shaw flow

J. Elezgaray
Centre de Recherche Paul Pascal, Avenue Schweitzer, 33600 Pessac, France

~Received 17 February 1998!

A simple dynamical model approximating the complex singularity motion of a Hele-Shaw flow is intro-
duced. This model describes accurately secondary tip-splitting instabilities and remains valid for values of the
surface tension and time intervals where previous perturbative calculations do not apply.
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The time evolution of an air bubble in a Hele-Shaw c
@1# belongs to the wide family of pattern forming system
that can be modeled as Laplacian growth phenomena.
such system is able to display~in some limit! complex or
fractal patterns, the understanding of which remains mo
incomplete. The usual picture is that the asymptotic patt
is reached through a cascade of instabilities~tip splitting or
side branching!. One expects that simple models for the d
scription of this cascade will shed some light on the und
lying dynamical mechanisms generating these complica
patterns. A particularly simple and enlightening example
the branched-growth model introduced in Ref.@2#, in the
context of diffusion-limited aggregation. The aim of th
present work is to introduce a simple dynamical model
the time evolution of the interface of a Hele-Shaw bubble

We will consider the formulation of the time evolutio
equations of a Hele-Shaw flow in terms of a conformal m
ping z(j,t), which maps the interior of the unit circleuju
<1 into the exterior of the bubble, the origin being mapp
to infinity. We will also assume the Darcy approximatio

~uW ;2¹W p, whereuW is the flow velocity averaged across th
cell andp the pressure!, the fact that the more viscous flui
is incompressible, while the bubble fluid has zero viscos
and will impose constant flux boundary conditions. The s
face tension will be denoted byT. The scaling of all the
physical quantities is the same as that of Ref.@7#. Working
with a conformal mapping rather than in physical space
particularly convenient in this context, mainly because
Laplace equationDp50 ~implied by the incompressibility!
can be easily solved in terms of the Poisson kernel. Hist
cally, this technique was used by Saffman@3# to derive the
first family of ~finger shaped! exact solutions in the limit of
T50. Most of the initial efforts have been devoted to t
understanding of the selection of thel51/2 Saffman-Taylor
finger ~l is the ratio of the finger width to the cell width!.
The solution of this problem@4# has revealed the subtle e
fect of the surface tension term, which acts as a sing
perturbation in the evolution equations.

At any time t for which the interface is regular, the map
ping z(j,t) is, by construction, analytic in 0,uju<1 but, in
general, can develop singularities outside. The motion of
latter is particularly interesting. For instance, whenT50 and
assuming the singularities to be isolated, it is easy to w
their exact evolution equations@5,6#. More generally, it has
been shown@7# that, whenT50, all the singularities con-
verge towards the unit circle, whereas their singularity ex
571063-651X/98/57~6!/6884~4!/$15.00
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nenta „defined by]jz(j,t);A(t)@j2js(t)#a
… is constant in

time. On the contrary, when surface tension is present, T
veer @7# has shown~assumingT!1! that only initial singu-
larities with a<24/3 preserve this exponent in time. Tho
~isolated! singularities with 24/3,a,21/2 are immedi-
ately transformed into a ‘‘cluster’’ of24/3 branch singulari-
ties localized around the initial singularity. Initial zeros
]jz(j,t50) also give rise to24/3 singularities~termed
‘‘daughter’’ singularities!, with the difference that they move
with a speed different from that of the original zero, so th
their respective trajectories eventually differ. Thus, the ex
tence of initial zeros of]jz(j,t50) leads to the strange situ
ation where theT50 and T small solution differ signifi-
cantly in orderO(1) time, even though theT50 solution is
regular for any time. This effect has been considered in@8#
and @9#. A method to measure the singularity strength h
been proposed in@10#, where we have directly confirmed th
existence of the24/3 singularities.

In this paper a simple dynamical model is presented
the motion of these singularities that works for values ofT
and time intervals where the perturbative calculations of@7#
have been shown to break down. Our initial motivati
comes from the consideration of the singularity distributio
observed in@10#, where we have provided evidence for th
existence of ‘‘new’’ singularities, that cannot apparently
related to those predicted in the framework of Ref.@7#. Those
should be considered as ‘‘second generation’’ singularit
in the sense that they appear later than both the initial sin
larities already present in the initial condition and their po
sible daughters. In Ref.@10#, we also mentioned the exis
tence of24/3 singularities induced by a weak branch c
(a.0) present in]jz(j,t50). The model we present her
accounts for both of these facts in a simple way and m
generally, provides a simple~but approximate! picture of the
appearance of secondary instabilities.

We start from the observation that the conformal mapp
given by

]jz~j,t !5A~ t !

)
i 51

N

@j2zi~ t !#

j2)
i 51

N

@j2pi~ t !#

~1!

is an exact solution of the Hele-Shaw flow equations ifT
50. Then,z(j,t)5B(t)/j1( i 51

N Ri(t)log(j2pi(t)). In order
to ensure the mapping to be conformal in 0,uju,1, one
6884 © 1998 The American Physical Society
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57 6885MODELING THE SINGULARITY DYNAMICS OF A . . .
needs to imposeuzi(t)u.1, upi(t)u.1, and ( i 51
N 1/zi(t)

5( i 51
N 1/pi(t). More general forms, allowing, for instanc

polynomials of different degrees in the numerator and
nominator, can be handled in a similar way. For the sake
simplicity, in this paper we will only consider the particula
form ~1!. The second observation is the fact that, if we ide
tify a fjord ~or protrusion! of the interface with an isolated
singularity, then the inspection of the time evolution of t
shape of a Hele-Shaw bubble shows that an approximatio
the type~1! with a fixed number of singularities should,a
priori , be adequate during some interval of time~up to the
appearance of additional fjords!. Increasing this interval will
imply adding more singularities in some rational way that
explain below.

Let us write the evolution equation of the conformal ma
ping in the form@7#

] tln zj~j,t !5zj
21]j„jzjI 1~j,t !…, ~2!

where

I 1~j,t !5
1

2ip E
uj8u51

dj8

j8

~j1j8!

~j82j!

3
1

uzj~j8,t !u2 Re@j8Wj8~j8,t !#, ~3!

and W(j,t) is a complex potential such that Re@W(j,t)#5
pressure. WhenT.0, the expression~1! is not a solution of
Eq. ~2!, but one can try to find values of the time derivativ
Ȧ(t), żi(t), and ṗi(t), such that the error estimate

E~ t !5
1

2ip E
uju51

u] tln zj~j,t !2zj
21]j„jzjI 1~j,t !…u2

dj

j
~4!

is minimized under the constraint that( i 51
N @1/zi(t)

21/pi(t)#50, for any time t ~this approach has been in
spired by a similar work@11# for the Burger’s equation using
the so-called traveling wavelets method!. One of the reasons
for using the particular form ofzj(j,t) given in Eq.~1! is the
fact that the minimization ofE(t) can be done in an analyti
way, the details of which will be given elsewhere. One
then led to consider the set of 2N11 coupled complex
ODE’s

M@Ȧ,ż1 ,...,ṗN#T5F, ~5!

whereM is a square matrix of size 2N11, andF a (2N
11)-dimensional vector, both of them being analytic fun
tions ofA(t),z1(t),...,pN(t). The evolution model we study
is the following. First, we choose~arbitrarily! some precision
parametere. For a given initial interface, it is always possib
@12# using Pade´’s method @13# to approximatezj(j,t50)
with precisione by an expression of type~1!. Let N0 be the
number of couples of singularities (zi

0 ,pi
0) obtained in this

way. Their time derivatives are chosen through the minim
zation ofE(0). However, it is likely thatE(0).e, in which
case more singularities are needed. One simple metho
find them is to perform a Pade´ analysis of the right-hand sid
of Eq. ~2!, evaluated on the unit circle. Notice that th
T-independent part ofI 1 ~such thatjWj52Q/2p, see@7#!
has exactly the same singularity structure aszj . As expected,
new singularities come into play through the surface tens
-
f

-

of

-

-

i-

to

n

term of I 1 . Let us note by (zi
T ,pi

T), i 51,...,N08 the zeros and
poles obtained from the Pade´ analysis of theT-dependent
term of the right-hand side of Eq.~2!. Then, the initial con-
dition will be written under the form~1!, with N5N0

12N08 , zi(0)5zi
0 , pi(0)5pi

0 , i 51,...,N0 , zi(0)5zi 2N0

T ,

pi(0)5zi 2N0

T , i 5N011,...,N01N08 , and zi(0)

5pi 2N02N
08

T
, pi(0)5pi 2N02N

08
T

, i 5N01N0811,...,N0

12N08 . This form ensures a correct approximation of bo
zj(j,t50) and its time derivative.

One of the major weaknesses of the present approac
related to the fact that the minimum ofE(0) is not uniquely
defined for the above form of the initial condition, but on
fixes the values ofżi2 ṗi , i 5N011,...,N012N08 . Thus, an
additional condition is needed in order to completely spec
the model. Several conditions have been tried, all of th
leading to similar conclusions as far as the asymptotic
namics is concerned. All the examples given below ha
been done by imposing that, att50, żi(t50)50, i 5N0

11,...,N012N08 . Another important point is whether two
slightly different interfaces~the exact initial interface and its
approximation using Pade´ approximants! evolve in a similar
way. In view of the results of@5#, this is probably wrong in
general. The examples below show, however, that, for fin
intervals of time, their time evolutions are comparable.

Let us first consider an initial interface with exactly tw
zeros and poles,z1(0)51.4, p1(0)51.3, z2(0)51.3A21,
p2(0) being determined by 1/p2(0)521/p1(0)11/z1(0)
11/z2(0). WhenT50, z2(t) reaches the unit circle in finite
time (t;0.6), and the interface develops a cusp. On
contrary,z1(t) is screened byp1(t), and never reachesuju
51. The addition of surface tension regularizes the probl
as can be seen in Fig. 1~b!, where the time evolution forT
50.01 and 0<t<28 is represented. The value ofT ~which is
rather large compared to those considered in Ref.@9#! has
been dictated by the wish of studying secondary instabili
in a reliable way@14#, as well as exploring parameter region
where the scaling predictions of Ref.@7# do not hold.

The Pade´ analysis of theT-dependent part ofI 1 imposes,
at the lowest order, the addition of~respectively! three and
four couples of singularities for each of the two initi
couples of singularities (N0857). Lower values ofN08 yield
E(0);i] t(ln zj)i. With the addition of these ‘‘new’’ singu-
larities, E(0);1022i] t(ln zj)i. The time evolution~com-
puted with an adaptive time step Runge-Kutta method! of the
set of 9 couples of singularities according to the dynami
model Eq.~5! is represented in Fig. 1~a!, the corresponding
interfaces being represented in Fig. 1~b!. The time integra-
tion of Eq. ~5! stops when the number of points required
evaluate the contour integrals involved inF exceeds 217; in
this particular case,t;18. From Fig. 1~a!, it is clear that the
singularities tend to organize~asymptotically! into pairs of
zeros and poles. Thus, based on the results of Ref.@10#, we
conclude that the present model approaches a24/3 singular-
ity by a pole (a521), accompanied by a neighboring zer
Figure 1~b! shows that this approximation is actually qui
reasonable@in this picture, the reference~‘‘exact’’ ! solution
has been computed using the algorithm of Ref.@15##. This
fact explains, in some sense, the early observations mad
Dai et al. @16# that the daughter singularities spawned by
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6886 57J. ELEZGARAY
initial zero can be approached~using Domb-Sykes plots, fo
instance! as polelike singularities. In other words, the sha
of a fjord corresponding to aa524/3 singularity, or that
generated by a zero-pole couple, are actually very close.
labeling of the zero-pole couples corresponds to that of F
1~b!. The two initial zero-pole couples become the two t
jectories marked 1 and 2. Those can be shown to corresp
to 24/3 singularities using the Fuchs analysis of Ref.@10#.
‘‘New’’ trajectories, marked 3, 4, and 5, correspond proba
to the daughter singularities of the two initial zeros. T
trajectories marked 6, 7, and 8 are typical examples of ‘‘s
ond generation’’ fjords. Notice that trajectories 6, 7, and
are much further fromuju51 than the others~the time evo-
lution of the ‘‘exact’’ interface is shown up tot524 in order
to stress the fact that trajectories 6 to 8 do eventually co
spond to fjords, something not visible att516!.

In Table I, the exact initial distribution of zeroes an
poles, and their asymptotic location is given. The asympt
pairing of zeros and poles does not necessarily correspon
the initial singularity distribution, and may depend on t
additional constraint needed to define the minimization
E(0). For instance,z6 goes to fjord 1, whereasp6 corre-
sponds, rather unexpectedly, to fjord 3. In contrast to thT
50 dynamics, where it can be shown@7# that the radius of

FIG. 1. ~a! Time evolution of the nine zero-pole couples a
proximating the initial condition ]jz(j,0)5(j21.4)(j
21.4A21)/(2j21.3)/@j2p2(0)#/j2 with surface tensionT
50.01@p2(0) is given in the text#. Zeros~poles! are represented by
circle ~squares!. The symbols belonging to the same trajectory a
connected by a continuous line. Their size decreases in tim
indicate the direction of the trajectory.~b! Comparison between th
reconstructed interfaces~dashed line,tmax516! corresponding to the
singularities represented in~a! and the exact interface~continuous
line, tmax528!, computed with the algorithm of Ref.@15#. The time
interval between two consecutive interfaces ist54.
e
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any singularity decreases in time, a typical singularity traj
tory ~when T.0! starts with a rather quick increase of th
radius~and in some cases of the angular position! followed
by a much slower approach of the unit circle. The initial fa
motion is critical for the separation of the singularities, a
its details depend onN08 . However, it is remarkable that th
asymptotic behavior is mostly independent ofN08 . In other

to

TABLE I. Initial singularity distribution of Fig. 1~a! ~radius and
angle refer to the polar coordinates of each singularity!, and their
asymptotic trajectory@numbered according to Fig. 1~a!#. Notice that
the couple (z9 ,p9) is too far from the unit circle to be in correspon
dence with any fjord.

Singularity
Initial
radius

Initial angle
~degrees!

Asymptotic
trajectory

z1 1.4 0.0 3
p1 1.3 0.0 1
z2 1.4 90.0 8
p2 1.395876 94.39870 2
z3 1.331099 89.760048 5
p3 1.331099 89.760048 5
z4 1.486233 89.108719 6
p4 1.486233 89.108719 8
z5 1.386236 86.821175 4
p5 1.386236 86.821175 4
z6 1.300675 0.0862870 1
p6 1.300675 0.0862870 3
z7 1.405713 23.0412028 7
p7 1.405713 23.0412028 7
z8 1.415905 3.34401773 2
p8 1.415905 3.34401773 6
z9 1.483946 20.39628865 9
p9 1.483946 20.39628865 9

TABLE II. Initial singularity distribution of Fig. 2~a! ~radius
and angle refer to the polar coordinates of each singularity!, and
their asymptotic trajectory@numbered according to Fig. 2~a!#.

Singularity
Initial
radius

Initial angle
~degrees!

Asymptotic
trajectory

z1 1.81 2179.956 18
p1 2.20 2179.956 3
z2 1.805 77.638 2
p2 7.07 60.3468 2
z3 1.805 277.638 2
p3 7.08351 260.60 2
z4 1.03429 2180 1
p4 1.03429 2180 38
z5 1.1369 89.0 3
p5 1.1369 89.0 1
z6 1.1371 288.9 38
p6 1.1371 288.9 18
z7 1.2137 60.755 4
p7 1.2137 60.755 4
z8 1.21454 260.745 48
p8 1.21454 260.745 48



of
on
k

al

e

ot

est

eros

ir
w
o

i-
t it

ed
by
n

of
ted,
’s
ap-
en-

ta-
lar-
the

m-
ch

o
.
e-

e
on
ca
-

s

57 6887MODELING THE SINGULARITY DYNAMICS OF A . . .
words, increasingN08 preserves the asymptotic behavior
the low generation singularities, and adds higher generati
characterized by the fact that the transient fast motion ta
the singularity farther and farther from the unit circle.

In order to study the effect of approximating an initi
conformal mapping not of the form~1!, let us now consider

FIG. 2. ~a! Time evolution (tmax525) of the eight zero-pole
couples approximating the initial condition]jz(j,t50)5(1.2
1j)0.511/j2, with T50.01. Zeros~poles! are represented by circl
~squares!. The symbols belonging to the same trajectory are c
nected by a continuous line. Their size decreases in time to indi
the direction of the trajectory.~b! Comparison between the recon
structed interfaces~dashed line! corresponding to the singularitie
represented in~a! and the exact interface~continuous line!. The
time interval between two consecutive interfaces ist55.
C

A

s,
es

the time evolution of]jz(j,t50)5(j10.5)0.511/j2. This
case has been studied in@10#, where we provided evidenc
for the generation ofa524/3 singularities from thea
51/2 initial singularity. Notice that besides the square ro
singularity, two symmetric zeros exist located atj0

6;0.4
6 i1.7, and that no zeros are present at infinity. The low
Padéapproximant of]jz(j,t50) in the form~1! consists of
three zero-pole couples, the poles associated to the two z
j0

6 being located fairly far fromuju51 ~rigorously, these
two poles should be located at infinity!. Table II gives the
exact initial location of the singularities, as well as the
asymptotic location. Applying Tanveer’s theory to this ne
initial condition naturally explains the existence of the tw
trajectories marked 1 and 18 in Fig. 2~a!, corresponding to
a524/3 ~cf. @10#!. Figure 2~b! also shows that the approx
mation made for the initial interface is quite good, and tha
is preserved under the dynamics of the system~5! for a non-
negligible interval of time. In fact, the differences observ
in Fig. 2~b! between the real interface and that generated
Eq. ~5! can be easily fixed by improving the approximatio
of the curvature-dependent term ofI 1 .

To summarize, the motion of the complex singularities
a Hele-Shaw flow has been shown to be well approxima
for finite time intervals, by a finite system of coupled ODE
describing the trajectories of pairs of zero poles. This
proximation is independent of the value of the surface t
sion parameter. The clusters of24/3 singularities, predicted
in Ref. @7#, are approximated by a finite~usually two! num-
ber of well defined zero-pole trajectories. Secondary ins
bilities can be related to the existence of a complex singu
ity structure induced by the surface tension term around
location of the singularities of]jz(j,t50). From this point
of view, the tip-splitting phenomenon appears to be a co
pletely deterministic mechanism, resulting from the approa
to the unit circle of singularities initially advected far from
their original position.

The author acknowledges computer resources from Pˆle
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